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We use a particle-based model of a swarm of interacting particles to explore analytically the conditions for
the formation of vortexlike behavior. Our model uses pairwise interaction potentials to model weak long-range
attraction and strong short-range repulsion with a dissipation function to align particle velocity vectors. We use
the effective energy of the swarm as a Lyapunov function to prove convergence to a vortexlike state. Our
analysis extends previous work which has relied purely on simulation to explore the formation and stability of
vortexlike behavior through analytical rather than numerical methods.
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Swarming patterns have been observed and reported for
various species in nature �1�. The coherent flock and single-
mill states are among the most common observed in biologi-
cal swarms �2,3�. An example of a double-mill pattern,
which is occasionally observed, has also been introduced �4�.
Emerging vortex patterns among individuals that interact
through pairwise artificial potential fields have been dis-
cussed by various authors �5–9�. In particular, we have been
shown that the total linear and angular momenta of the
swarm are conserved with a pairwise dissipation function
�9�. The vortex pattern was then shown to be a constrained
minimum of the total effective energy of the swarm. While it
was shown that the vortex pattern was an extremum of the
total effective energy, stability was not addressed. In the
work reported here we use a Lyapunov function to demon-
strate that the swarm will always relax into a vortexlike state.
This analytic approach extends previous work on vortexlike
behavior in particle-based models which have relied purely
on simulation �8� and provides analytical insights into results
from heuristic rule-based simulation �10�. In addition,
through the use of analytic methods, our work has wider
application to the construction of provable behaviors in
swarms of interacting robotic agents.

We consider a swarm that consists of N identical particles
of equal mass m with position and velocity �xi ,vi� defining
the state of the ith particle. Attraction among the particles in
the swarm is defined through a weak long-range attractive
potential Ua

ij =−Ca exp�−�xij� / la�, while collisions between
particles are prevented through a strong short-range repulsive
potential Ur

ij =Cr exp�−�xij� / lr� �5–7�. The strengths of the
attraction and repulsion potentials are denoted by Ca and Cr
with ranges la and lr, respectively. The particles attempt to
align their motion with neighbors through a velocity-
dependent orientation force �i, which is defined as �i

=� j�iCo�vij · x̂ij�exp�−�xij� / lo�x̂ij, where �·̂� denotes a unit
vector, Co is the strength of the orientation force, and lo is the
range of the orientation force. Parallel orientation of the par-
ticle velocity vectors then emerges due to the dissipative na-
ture of the orientation force such that motion towards or
away from neighbors is weakly damped, proportional to the
component of relative velocity along the vector connecting

neighboring particles, vij · x̂ij. This pairwise dissipation there-
fore results in a local alignment of particle velocity vectors,
as used extensively in heuristic rule-based approaches �10�.
The exponential term in the orientation force ensures that the
effect is localized, while the pairwise interaction along x̂ij
leads to conservation of angular momentum. We note, how-
ever, that due to the summation over all particles in the
swarm, there is an inherent bias towards the behavior of the
group rather than solely discrete pairs of particles.

The evolution of the swarm of interacting particles is now
defined through the interaction potential and orientation
force such that

ẋi = vi, �1a�

mv̇i = − �Ui
a − �Ui

r − �i, �1b�

where Ui=� jUij and ��·�=��·� /�xi. The three terms in Eq.
�1b� are defined such that lr� lo� la. This arrangement is
equivalent to the zone of repulsion, zone of orientation, and
zone of attraction which has been used successfully in both
rule-based simulation �10� and laboratory experimentation
with biological swarms �11�. The use of artificial potential
fields to mediate interactions between particles provides a
continuous representation of these rule-based methods,
which, unlike rule-based heuristics, is amenable to analytic
investigation and formal proof.

The effective total energy of the swarm � is now defined
through a summation to evaluate each pairwise potential in-
teraction and a summation of the kinetic energy of each par-
ticle. Therefore, the total effective energy of the swarm is
defined as

� =
1

2�
i

mvi
2 + �

i

�Ui
a + Ui

r� . �2�

Taking the time derivative of Eq. �2�, it can be seen that

�̇ = �
i

vi · �mv̇i + �Ui
a + �Ui

r� . �3�

Then, substituting from Eq. �1b� into Eq. �3�, it can further
be seen that*FAX: ��44 141 552 5105. mohamed.mabrouk@strath.ac.uk
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�̇ = − �
i

vi · �i �4�

and so

�̇ = − �
i

vi · �
j�i

Co�vij · x̂ij�exp�− �xij�/lo�x̂ij . �5�

We now demonstrate that �̇�0 by considering an arbitrary
term in the summation as

Sij = �vi · x̂ij��vij · x̂ij�exp�− �xij�/lo�

+ �v j · x̂ ji��v ji · x̂ ji�exp�− �x ji�/lo� . �6�

However, noting that x̂ ji=−x̂ij and v ji=−vij, it can be seen
that

Sij = �vi · x̂ij��vij · x̂ij�exp�− �xij�/lo�

− �v j · x̂ij��vij · x̂ij�exp�− �xij�/lo� , �7�

and so using the identity vij =vi−v j, it can further be seen
that

Sij = �vij · x̂ij�2 exp�− �xij�/lo� . �8�

The rate of change of the total effective energy of the swarm
can therefore be written as

�̇ = −
1

2�
i=1

�
j�i

Co�vij · x̂ij�2 exp�− �xij�/lo� . �9�

Since Co�0, the quadratic term in Eq. �9� ensures that
�̇�0 so that the total effective energy of the swarm is mono-
tonically decreasing.

In previous work we demonstrated that vortexlike patterns
could be interpreted as a constrained minimum-energy state
�9�. Considering the total effective energy of the swarm,

E = �1

2�
i

mvi
2 + �

i

�Ui
a + Ui

r�� − � · ��
i

mxi � vi − H� ,

and enforcing conservation of total angular momentum H
through a Lagrange multiplier �, it was shown that

�E

�xi
= ��Ui

a + �Ui
r� − m� � vi = 0 , �10a�

�E

�vi
= m�vi − � � xi� = 0 , �10b�

so that the constrained minimum-energy state of the swarm
corresponds to vortexlike rotation with the velocity vector of
each particle normal to its position vector and the vector �
such that vi=��xi. The Lagrange multiplier � was identi-
fied as the angular velocity vector of the swarm which is
directed along H. Therefore, it can be seen that in the con-
strained minimum-energy state vij =��xij and so, in Eq. �9�,
vij · x̂ij = ���xij� · x̂ij. However, using the scalar triple product
identity vij · x̂ij =� · �xij � x̂ij�=0, and so �̇=0 in the vortex-
like state.

We have therefore demonstrated that the vortexlike state
is an extremum of effective swarm energy and that this ex-
tremum is a global minimum by use of a Lyapunov function.
It can therefore be concluded that with the orientation force
�i, a swarm of particles in an initially random state will
always relax into a spatially coherent vortexlike pattern, as

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Formation of a vortexlike pattern in a swarm of inter-
acting particles �N=50� with Ca=1, Cr=2, Co=0.1, la=1, lr=0.2,
and lo=0.5 for nondimensional time t=0 until t=7 �top left to bot-
tom right�.

FIG. 2. Time rate of change of the total effective energy of the
swarm.
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observed in a wide range of biological swarms �1,3,12� and
in simulation �5,7,10,13�. The emergence of the stable vor-
texlike state depends only on the dissipation force and not on
the specific structure of the weak long-range attraction and
strong short-range repulsion potentials. Again, we note that
the use of artificial potential fields to mediate interactions
between particles provides a continuous representation of
rule-based methods with the length scales lr� lo� la equiva-
lent to the zone of repulsion, zone of orientation, and zone of
attraction used in rule-based simulation �10� and laboratory
experimentation �11�.

Finally, in order to illustrate the formation of vortexlike
patterns using the mechanism discussed above, a planar
swarm of N=50 particles is considered. The particles in the
swarm are randomly distributed over a unit disk with a ran-
dom distribution of initial velocities. The free parameters are
selected such that lr� lo� la so that the swarm experiences
weak long-range attraction, strong short-range repulsion, and
local velocity alignment. It can be seen from Fig. 1 that the
swarm slowly relaxes into a vortexlike pattern. As the swarm
relaxes, the time rate of change of the total effective energy
of the swarm vanishes, as shown in Fig. 2.
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